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Abstract: Cognitive radio (CR), as a concept based on the ability to detect and share the unutilised
spectrum, has been envisioned as a promising candidate to improve the efficiency of frequency
spectrum assignments. For the realisation of the CR concept, energy detection (ED), as one of
the available spectrum sensing methods, is broadly considered because of its low computational
complexity and implementation costs. Due to the vast usage of the orthogonal frequency division
multiplexing (OFDM) technique in contemporary communication systems, the ED of OFDM signals
in the CR networks has become important for practical realisation. Since the ED accuracy of the
OFDM signals can be improved by the sensing threshold adaptation, this paper surveys the impact
of noise variations and dynamic threshold (DT) adaptation on the ED performance of OFDM signals.
Analyses were performed by the simulation of the ED related to OFDM signals transmitted in
the margin or rate adaptive and combined margin and rate adaptive OFDM systems. The results
obtained through extensive simulations provide fundamental insights into how different factors,
including the transmission power, the signal to noise ratio, the false alarm probability and the sample
quantity, affect the ED efficiency. Comprehensive analyses of the obtained results indicate the main
ED weaknesses and how the appropriate selection of analysed factors can enhance the ED processes
for different OFDM systems. The observed ED weaknesses were further thoroughly surveyed, and
the open issues and challenges related to the enhancement of the main ED limitations have been
elaborated. The presented survey results can serve as a basis for the improvement of a broadly
accepted ED method in CR networks.

Keywords: adaptive algorithms; cognitive radio; energy detection; OFDM modulation; detection
probability; spectrum sensing; wireless networks; radio spectrum management; signal detection;
dynamic scheduling

1. Introduction

Due to the rapid growth in the number of wireless devices, the exponential increase
in the number of new applications and the continuous demand for higher data rates,
the radio frequency (RF) spectrum has become increasingly crowded. In addition, RF
congestion is further contributed to by the growing demand for mass spectrum access,
particularly for social and personal applications. The problem of a congested RF spectrum
becomes even more severe with the implementation of technologies like 5th generation
(5G) cellular networks and the Internet of Things (IoT). These trends in communication
networks request a new generation of devices that will be aware of their RF surroundings
and which will facilitate efficient, flexible and reliable operations and the utilisation of
available spectral resources. Analyses indicate that many unlicensed and licensed parts of
the RF spectrum are not optimally exploited and that the idle and occupied periods of the
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RF spectrum vary in both time and space domains [1–3]. Cognitive radio (CR) as a concept
based on the ability to detect and share the unutilised spectrum has been envisioned as a
promising candidate for improving policy related to the inefficient assignment of frequency
spectrum [4]. In CR, spectrum sensing (SS) is seen as the most demanding process. The
goal of SS is to detect the periods of inactivity of the licensed user, known as the primary
user (PU), in a specific frequency band and, if this band is available, to enable transmission
for an unlicensed user, known as a secondary user (SU), such that it does not interfere with
the PU. Thus, the utilisation of an unutilised band by the SU in the moments when the PU
is not active can significantly reduce the spectrum scarcity problem [5,6].

Different approaches have been proposed in the literature for SS. Energy detection
(ED) as one of the non-cooperative methods of SS is broadly considered due to its low
computational complexity and simple implementation. The main advantage of the ED
method is the fact that it does not include complex signal processing and does not require
prior information about the PU signal. However, ED has some limitations, such as the need
for a priori knowledge on the noise energy level or its reliable estimate, a susceptibility to
the noise power uncertainty (also known as noise uncertainty (NU)), a poor performance
below a certain value of Signal-to-Noise Ratio (SNR) level (known as noise floor level) and
the lack of ability to distinguish between PU signals, SU signals and interference [3,7].

In essence, the ED technique includes an estimation of the received signal energy at
the receiver side and a comparison of the estimated energy, with a set threshold to confirm
the presence or absence of the PU signal. The SS performance of the ED method depends
greatly on the setting of the detection threshold [8]. Setting an appropriate threshold is
a challenging task since it must differentiate among the PU signal and noise. Dynamic
threshold (DT) adaptation and the fixed threshold approach are two main approaches to
set the detection threshold of the PU signal in the ED process.

A conventional energy detector uses a fixed threshold value to judge the occupation
of the spectrum. In this case, regardless of the SNR fluctuations, the fixed threshold value
does not change over time. The disadvantage of this approach is that the system requires
prior knowledge of the noise level. The threshold is determined as the most appropriate
and it is set manually as a static level above a noise floor. If the static threshold is set
too high above the noise floor, the percentage of PUs that will remain undetected can
increase, which may cause harmful interference from the SU to the PU. Hence, due to the
fluctuating nature of the noise signals that exist in practice, this approach is susceptible to
erroneous decision-making. Some fixed threshold techniques that have been proposed in
the literature are histogram analysis, the empirical analysis of spectrum measurements, the
receiver noise characteristics threshold and the P-tile-based threshold technique [9–11].

Unlike the fixed threshold technique, the dynamic (adaptive) threshold approach
adjusts the threshold values to variations in the noise, enabling the SU to dynamically
adapt its detection threshold according to the current SNR, sensing time or PU transmit
(Tx) power [10,12]. In the case of the DT approach, a priori knowledge of the PU signal
and noise floor level is not required. Some of the DT techniques are Otsu’s algorithm,
Principal Component Analysis, Maximum Normal Fit and Recursive One-Sided Hypothesis
Testing [9,10,12–15].

Although the DT approach is more demanding in terms of the practical implemen-
tation than the static threshold approach, stated references show that the DT approach
improves the performance of the energy detector. This is a consequence of the fact that,
in realistic conditions, thermal noise and interference from other remote communication
systems causes noise variation (also known as NU). This NU in turn contributes to the
variation in the SNR of the SU [16]. While NU in SS makes the detection process with
a fixed threshold unreliable, by contrast, the DT technique can cope with NUs through
DT adaptation. Hence the techniques based on DT are more robust to noise [9,17], which
motivates the investigation of DT adaptations in relation to ED performance in this survey.

Additionally, in this work, the performance evaluation of the ED process based on
DT was performed for the Orthogonal Frequency-Division Multiplexing (OFDM) signals
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received at the location of the SU. OFDM was selected for analysis since it is seen as a
promising candidate for use in cognitive radio networks (CRN) due to the implementation
of a cyclic prefix (CP) for mitigating multipath fading and reducing inter-symbol interfer-
ence (ISI) [14,18,19]. OFDM has become the modulation of choice in a large number of
wireless broadband systems, which explains the necessity of performing analyses on the
ED performance for OFDM signals.

Versatile modulations are used in communication systems based on OFDM that in-
cludes 16/64/256/1024/2048 . . . Quadrature Amplitude Modulation (QAM), Quadrature
Phase-Shift Keying (QPSK) and Binary Phase Shift Keying (BPSK). The choice of the optimal
modulation technique depends on the cost-effectiveness of the system, the ability to provide
larger data rates, Bit Error Rate (BER) and SNR [20,21]. The OFDM modulation selection
is closely related to the OFDM system design. In practice, three different approaches are
used for OFDM systems, namely the margin adaptive (MA) dedicated to the minimisation
of the transmit (Tx) power with respect to the BER and transmission rate constraints, the
rate adaptive (RA) dedicated to the maximisation of the transmission rate with respect to
the BER and Tx power constraints, and the combined MA and RA approach, which jointly
optimises the Tx power and transmission rate under a BER constraint [22]. Since the ED
process is impacted by each of these OFDM system design approaches, comprehensive
analyses were performed in this work to perceive this impact.

Additionally, this paper surveyed the literature on the evolution of ED as one of
the most represented methods for local SS in cognitive radio networks. The influence
of DT adaptations on ED performance concerning the signals transmitted using distinct
OFDM-based systems was also analysed. The analyses were performed using a developed
simulation algorithm that enables simulation of the ED process. The proposed algorithm
simulates ED of PU signals based on the DT adaptation for each OFDM system design
impacted by different NUs. This survey includes a pseudocode of the simulation algorithm
in order to show the practical aspects of the developed algorithm. Simulation is performed
for versatile simulation scenarios, differing in the selection of impact of the NU level and
DT adaptation on the ED of differently modulated OFDM signals.

The main contributions of this paper are:

• mathematical formulation and explanation of the SS models which take into account
the impact of NU variations, DT adaptations, and both, on the probability of ED,

• presentation of the algorithm developed for simulating ED performance on differ-
ently modulated OFDM signals detected in MA, RA, and combined RA and MA
based implementations,

• a systematic investigation based on extensive simulations on how the different OFDM
modulations and corresponding Tx powers, the SNRs in the position of SU, the levels
of NUs, the sample quantity, and the false alarm probability impact on the probability
of signal detection in the ED process with DT adaptation,

• explanation of the limitations of ED as one of the local SS methods, with discussion
on future research challenges and opportunities related to the improvement of the
ED technique.

The rest of the paper is structured as follows. In Section 2, an overview of the topic
related to the SS of OFDM signals is presented. Section 3 describes communication technolo-
gies and versatile communication systems, which use OFDM as a transmission technique.
ED of OFDM signals as the SS model is introduced in Section 4. The mathematical formula-
tion of SS models which take into account the impact of NU variations, DT adaptations and
both on the probability of ED is presented in Section 5. The algorithm used for simulation of
the ED process based on DT adaptations is presented in Section 6. The extensive simulation
results to determine the ED of signals transmitted using distinct OFDM-based systems are
presented and surveyed in Section 7. Based on the analyses presented in Section 7, the
main ED drawbacks and future research challenges and opportunities for future research
relating to the improvement of ED performance are thoroughly discussed in Section 8.
Finally, some concluding remarks are given in Section 9.
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2. Related Works on the SS of OFDM Signals

OFDM is a multiplexing scheme based on the idea of transmitting data using a number
of orthogonal subcarriers [20]. This orthogonality can reduce the interference between
the subcarriers and increase spectrum efficiency utilisation. Figure 1 presents the block
diagram of the OFDM system consisting of three main subsystems: a transmitter, wireless
channel and receiver.
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Figure 1. Block diagram of OFDM transmission and reception process.

Firstly, randomly generated data is sent to the transmitter block serially. Then, a
serial-to-parallel conversion is performed. To modulate the signal for transmission, one of
the possible modulation schemes (e.g., BPSK, QPSK, 16/64/256/ . . . QAM) is used. The
parallel bits of data are mapped to the subcarriers using an Inverse Fast Fourier Transform
(IFFT) block. During the further signal processing, a cyclic prefix (CP) is inserted into
the OFDM symbol and a guard interval (GI) is appended to each block of data to combat
inter-symbol-interference (ISI). After the insertion of the CP and GI, the resultant OFDM
symbols are converted to serial form and transmitted through a channel. To extract the
original information, the OFDM receiver performs processes that are the reverse of those
performed by the OFDM transmitter (Figure 1) [23].

The SS of OFDM signals transmitted according to the described transmission process
has been analysed in different studies in the literature [10,11,19,24–35]. In Table 1, an
overview of ED methods and their corresponding merits are presented. In Ref. [24], the
relationship between the probability of signal detection and the probability of assuming the
existence of PU when PU is not actually present (also known as a false alarm probability)
was analysed. The analyses were performed for the ED of BPSK signals transmitted in
Wireless Local Area Network (WLAN) and Worldwide Interoperability for Microwave
Access (WiMAX) systems. It is shown that a major challenge for the ED SS is the inability
to sense OFDM signals at low SNRs [10,25].

The SS using ED of OFDM signals transmitted with QPSK modulation is proposed
in Ref. [11] (Table 1). To estimate the sensing threshold, an adaptive inverse cumulative
density function method was used. The disadvantages of the simulated ED method
were analysed by defining how the detection capabilities of an implemented real ED
corresponds to the simulated equivalent. In Ref. [41], the detection of narrowband OFDM
signal transmission by means of ED method was proven to be feasible, with the possibility
of extending SS based on the ED method to more complex OFDM systems. It is also shown
that in a system where NU exists, even if the threshold is set adaptively, the presence of
any in-band interference can reduce the detection precision of the energy detector.
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Table 1. Overview of ED methods analysed in the literature and their corresponding merits.

Approach Analysed in the Literature Description of the Analysed Approach The Merit of the Analysed Approach

Only the ED approach with fixed
detection threshold [7,18,24,27,34]

No influence related to the impact of NU
and DT adaptation

The strong impact of NU and lack of DT
adaptation significantly degrade the

reliability of ED performance

The ED approach impacted by NU
and without DT

adaptation [12,25,26,28,30–32,36]

Analyses of ED performance taking into
account the impact of the NU variations

Reduced detection probability of ED
method due to impact of NU variation

caused by thermal noise and interference
from neighbor communication systems

The ED approach with DT adaptation
and without the impact of NU

variations [8,10,11,13,37]

Analyses of ED performance based on the
selection of the appropriate value of the DT

Somewhat improved detection
probability of ED method due to

exploitation of DT adaptation but less
realistic due to neglecting the impact of

NU variations

The ED approach impacted by NU
variations and performed using DT

adaptation [9,16,17,38–40]

Analyses of ED performance based on the
selection of the appropriate value of the DT

impacted by the NU variations

The best detection probability of ED
method and the most realistic approach

for simulation and analyses

In Refs. [26,27], based on the CP feature of the OFDM signal, the Neyman-Pearson SS
approach for OFDM signal detection was presented. This showed the extreme sensitivity
of the proposed SS method to NU. Additionally, in Refs. [19,28,29], algorithms considering
properties of the OFDM CP for SS were presented. The expression for selecting the sensing
threshold is derived from Ref. [28] and has proven to be accurate and robust when put
through simulations (Table 1). The proposed detection is capable of identifying weak
OFDM signals due to its high sensitivity. The ED algorithms proposed in Refs. [19,29]
proved to be sensitive to the changes in timing offset. In Ref. [27], a generalised ratio
test based on log-likelihood in which the false alarms and signal detection probability are
independent of the timing offset were studied.

A tutorial on the ED method and the thorough analysis of the test statistic in the ED
process, without addressing the NU problem and DT adaptation, was given in Ref. [30].
Ref. [31] proposed a new technique for the SS of OFDM signals impacted with NU (Table 1).
The results of simulations indicated that the proposed detector based on the mean ambi-
guity function can yield good performance of energy detection in environments with low
SNR and can be persistent to NU.

Recent research attempts have been dedicated to finding the optimal detection thresh-
old for SS based on ED (Table 1) [37–40]. In Ref. [38], an approach based on a double
threshold for an unequal scale sampling was proposed to reduce the impact of NU and
asynchronous primary user occurrence. The results of the simulation confirmed the effec-
tiveness of the proposed approach in terms of improving the detection probability, while
keeping the false alarm probability within the demanded range. The performance of an ED
under NU, while employing an optimal threshold and DT correction with Chi-square and
Gaussian distributions of the received signal power, was studied in Ref. [39]. The results
obtained showed that the selection of an optimal threshold in the ED process impacted by
NU reduces the probability of error. A novel approach to DT selection based on an online
learning algorithm was proposed to improve the performance of ED and the matched filter
method through minimization of the overall error probability [40]. Presented simulation
results confirmed that optimal threshold selection improves the performance of SS. A
three-event ED algorithm based on optimal DT adjustment was proposed in Ref. [37].
The proposed algorithm minimizes in one iteration the probability of ED error based on
Newton’s method with forced convergence [37]. The developed method was analysed
through simulations and results showed that the proposed method outperformed the con-
ventional ED method. Although results presented in recently published literature showed
that selection of optimal threshold improves ED performance (Table 1), they also showed
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that no universal approach to a dynamic selection of optimal threshold currently exists and
that finding the optimal threshold represents a challenging task.

In Ref. [32], we showed the results related to the influence of NU on the energy
misdetection probability of OFDM based systems in an MA system design. In addition,
in Ref. [36] (Table 1), the analyses of the impact of NU on ED performed without DT
adaptations for diverse OFDM based systems were shown. The results obtained indicated
that the ED performance in different OFDM systems was significantly impaired by the
NU. The results presented in this work are used as bases for analyses on how dynamic
threshold adaptation impacts ED performance in OFDM systems which operate under
versatile NU levels.

Previous research has shown that DT adaptation and NU variation have an impact
on the ED process (Table 1). However, based on knowledge obtained through extensive
analysis of previous works, the systematic and comprehensive presentation of results
and cognitions related to the ED of OFDM signals are missing. This paper fills this gap,
since it offers comprehensive analyses of the impact of NU and DT adaptation on ED
performance of signals transmitted in OFDM systems using RA, combined MA and RA,
and MA transmission schemes. Hence, in this survey paper, the computer simulation of the
developed ED algorithm, presented with pseudocode, was used to overview the influence
of DT adaptation and NU variation on ED effectiveness for distinct OFDM based systems.
Furthermore, the main limitations of the ED method are thoroughly reviewed, and areas of
new research and associated challenges related to the improvement of ED performance are
discussed. Hence, the presented comprehensive survey related to the performance of the
ED of OFDM signals can serve as a reference for the improvement of the ED as a widely
used SS approach.

3. Design of Different OFDM Based Systems

OFDM systems use three different types of design option (algorithm) for signal trans-
mission (Figure 2). The first algorithm is based on the rate-adaptive (RA) design, which
tends to maximise the instantaneous data rate with respect to the BER ad Tx power lim-
itations. When the Tx power is kept at a fixed value in order to ensure equal BER (i.e.,
equal QoS), the transmitter must adjust the OFDM modulation scheme (m-PSK/m-QAM)
according to the conditions in the wireless channel. A lower transmission rate realized
through the selection of the lower constellation order (m) of the OFDM modulation will
be used in the case of poor channel quality and vice versa. Different real OFDM sys-
tems transmit with fixed Tx power, since the concept which exploits adaptive modulation
selection is simpler in terms of the practical implementation of circuit design [22]. Imple-
mentations of such OFDM systems include WLAN, WiMAX, etc. However, in RA systems,
information about the quality of the wireless channel, commonly detected at the receiver
end, must be returned through a reverse channel to the transmitter which will adjust the
appropriate modulation.

The second OFDM design algorithm is based on margin-adaptive (MA) system design,
which minimises the Tx power based on the BER and data rate limitations (Figure 2). To
ensure the same QoS (i.e., the same BER) while keeping the unchanged transmission rate
(constellation order m must be kept unchanged), the Tx power should be changed based on
the conditions in the wireless channel: a higher Tx power where the quality of the wireless
channel is poor, and vice versa [22].

The third algorithm takes into account the recently adopted power and bit loading
design option, which functions as a combined MA and RA approach (Figure 2). This
approach tends to minimise the Tx power and maximise the data rate with respect to the
instantaneous BER constraints in the wireless channel [22]. The incentive to employ, in
conjunction, margin and rate optimisation can be found in the newest wireless systems
that operate in diverse conditions and requirements. More precisely, minimisation of Tx
power is important when operating in shared interference-prone spectrum environments
or near frequency-adjacent users. Additionally, if sufficient OFDM guard bands exist to
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differentiate the users, maximisation of throughput can be performed for the purpose of
better utilisation of the wireless channel.
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Besides OFDM-based transmission where users are only scheduled on the time domain
scale, in the OFDM access (OFDMA) systems the users are scheduled on a frequency and
time domain scale. Hence, OFDMA systems are based on OFDM and have a broad practical
implementation, which is defined in IEEE 802.16 (WiMAX), IEEE 802.11ax (WLAN), IEEE
802.20 (mobile broadband wireless access), Log Term Evolution/Advanced (LTE/LTE-
A) and 5G systems [6,42,43]. OFDMA is also a possible access method for the Wireless
Regional Area Networks (WRAN) defined in the IEEE 802.22 standard.

4. Energy Detection Model

SS, as the most demanding activity of CR, enables SU (unlicensed users) to adapt to
the environment by detecting spectrum portions unused by licensed network users (PU).
The problem of SS can be mathematically expressed as a binary hypothesis [8,17,44]:

H0 : yi(n) = wi(n),
i = 1, . . . , M, n = 1, . . . , N if PU is absent

H1 : yi(n) = x(n) + wi(n),
i = 1, . . . , M, n = 1, . . . , N if PU is present

(1)

where wi(n) is the noise signal received by the i-th SU, yi(n) is the signal received by the
i-th SU during the n-th sample, x(n) is a transmitted signal from i-th PU impacted by the
temporary amplitude gain of the channel at the point of discrete time sample n, and N is
the overall sample quantity (number of samples) used in the sensing.

Period (number of samples) and M is the overall number of SUs [24,45,46]. In Table 2,
all descriptions of parameters used in this work are presented.

In Figure 3, a general block diagram of the detector based on the ED method is shown.
The received signal yi(t) consists of the signal of PU x(t) and the noise signal wi(t). In the
ED process, the received signal is passed through a band-pass filter (BPF) in order to select
the signal bandwidth of interest and to remove out-of-band noises [24]. An analogue to
digital converter (ADC) transforms the received signal in the digital domain and feeds it
into two sub-processes (Figure 3).
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Table 2. Parameters with their corresponding descriptions.

Index Description

H0 Hypothesis which determines the absence of the PU signal
H1 Hypothesis which determines the presence of the PU signal

yi(n) Averaged received signal for i-th SU and for n-th sample
wi(n) AWGN signal for i-th SU

σ2
ni

Variance of AWGN signal for i-th SU without NU variations and DT adaptation
σ2

NUDTi
AWGN variance (interval) for ED with NU variations and DT adaptation

σ2
NUi

AWGN variance (interval) for ED with NU variations
x(n) Transmitted i-th signal from the PU

τi Energy test statistic signal level of the detected signal
λi Detection threshold of i-th SU for ED without NU variations and DT adaptation
λdi Detection threshold based on CDR and without NU variations and DT adaptation
λ f ai False alarm threshold based on CFAR and without NU variations and DT adaptation
λ′DT

i DT (interval) for ED without NU variation
λ′NUDT

i DT (interval) for ED with DT adaptation and NU variation
Pdi

Detection probability for ED without NU and DT
Pf ai

False alarm probability for ED without NU and DT
PDT

di
Detection probability for ED with DT adaptation

PDT
f ai

False alarm probability for ED with DT adaptation
PNU

di
Detection probability for ED with NU variation

PNU
f ai

False alarm probability for ED with NU variation
PNUDT

di
Detection probability for ED with DT adaptation and NU variation

PNUDT
f ai

False alarm probability for ED with DT adaptation and NU variation
ρ NU factor
ρ′ DT factor
Q Standard Gaussian complementary CDF

Q−1 Inverse standard Gaussian Complementary CDF
P Average received PU signal power at position of SU
N Overall sample quantity for ED without DT adaptation and NU variation

NDT Overall sample quantity for ED with DT adaptation
NNU Overall sample quantity for ED with NU variation

NNUDT Overall sample quantity for ED with DT adaptation and NU variation
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Figure 3. Block diagram of the energy detection process.

In the first sub-process, the SU (cognitive radio) performs sampling and digital signal
processing (Figure 3). The received signal is estimated via the magnitude square of the fast
Fourier transform (FFT) and the result of this sub-process is the energy test statistic τi(n)
obtained for an average of N samples, expressed as [45,47]:

τi(n) =
1
N

N

∑
n=1
|yi(n)|2 (2)

In the second parallel sub-process (Figure 3), the noise variance is evaluated according
to SNR variations. Since modulation schemes like OFDM are designed to employ frequency
diversity to provide robustness against fading, in this analysis, frequency-selectivity of
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multipath channels have been neglected. This is due to OFDM spreading of the wideband
signal into many modulated narrowband subcarriers, which results in exposing those
subcarriers to flat fading. Hence, the impact of noise received at the location of SU has been
modelled in this analysis as additive white Gaussian noise (AWGN). AWGN is assumed to
be an independent and identically distributed random process of zero mean and variance,
σ2

ni
, with a power spectral density, wi(n) ∼ N (0,σ2

ni
).

The total variance of the received signal (σ2
yi
) can be expressed as:

σ2
yi
= σ2

x + σ2
ni
= σ2

ni
(1 + SNR) (3)

where σ2
x represents the variance of transmitted signal from the PU which can be expressed

as σ2
x = SNR σ2

ni
. Assuming that there is no deterministic knowledge about the signal x(n)

besides the average received power of the PU signal (which is characteristic of ED as a SS
method), the average received power is expressed as:

P =
1
N

N

∑
n=1
|x(n)|2 ≈ σ2

xi
(4)

and the relation (3) can be transformed to σ2
yi
= P + σ2

ni
.

In the case of the known noise variance σ2
ni

and no uncertainty in noise variance (NU),
τi(n) can be approximated using Gaussian distribution alongside a central limit theorem,
where the hypotheses Ho and H1 (from relation (1)) become [45]:

τi(n) | H0 ∼ N
(

σ2
ni

,
2
N

σ4
ni

)
(5)

τi(n)| H1 ∼ N
(

P + σ2
ni

,
2
N
(P + σ2

ni
)

2
)

(6)

To assess the performance of ED, a signal level that will be used as a decision threshold
(λi) must be defined and comparison with the energy test statistic signal level (τi) generated
at the location of i-th SU must be performed. The decision threshold is determined based on
the noise variance information obtained from the previous block, as in (Figure 3) [11,45,48].
The detection rule is defined by:

τi(n) > λi(n), PU present (7)

τi(n) < λi(n), PU absent (8)

where the signal level (τi(n)) of the test statistic is obtained by calculating the received
signal energy according to (2). This is obtained for a set of n samples and compared with the
threshold λi(n), which can be dynamically adapted and thus differs at the moment when a
number of samples n is used for ED. Basically, the performance of the ED as an SS technique
is done by examining the Neyman-Pearson hypothesis. To assess the Neyman-Pearson
hypothesis, the comparison between the decision threshold and log-likelihood ratio of the
received signal will be [11]:

H0 : log

P
(

y0, y1, ..., y(N−1)

∣∣∣H1)

P
(

y0, y1,..., y(N−1)

∣∣∣H0)

 < λi, PU absent (9)

H1 : log

P
(

y0, y1, ..., y(N−1)

∣∣∣H1)

P
(

y0, y1, ..., y(N−1)

∣∣∣H0)

 > λi, PU present (10)

where P(y|H0) and P(y|H1) indicate the probability density functions (PDF) of the hy-
pothesis H1 and alternative null hypothesis H0, respectively.
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The hypothesis H0 in relation (9) is valid if the received signal energy is lower than the
set threshold (λi), and this confirms the existence of a spectrum hole. Based on the relation
(10), another hypothesis H1 is confirmed if the received signal energy is larger than the
threshold value (λi), which leads to the cognition that the PU actively transmits [11,24,45].
The threshold λi can be fixed or dynamically adjusted where threshold levels can be
selected from the pool of values in a specific range, which is derived and explained in
Section 5.

4.1. Receiver Operating Characteristic Curves

In order to evaluate the performance of SS techniques, several metrics are used. The
most common are detection probability and false alarm probability. The probability that
the SU correctly declares that a PU is present when the PU is really present is defined as
the detection probability (Pdi

). The probability that SU incorrectly declares that the PU is
present when the PU is actually absent is the false alarm probability (Pf ai

) [11].
The interdependence between the probability of signal detection and the false alarm

probability has been mostly expressed through receiver operating characteristic (ROC)
curves (Figure 4). In Figure 4, the different spaces above and below the diagonal (also
known as the line of no-discrimination) identify the quality of ED. If the ED process
can be expressed as the line of no discrimination, this means that the quality of the ED
process corresponds to a random guess. Generally, the ROC space above the diagonal
represents good detection results (better than random) while the space below the diagonal
line represents poor ED (worse than random). Hence, the ED will be less accurate if the
curve is closer to the 45-degree diagonal of the ROC space (Figure 4). The closer the curve
follows the left-hand border and the top border of the ROC space, the more accurate the
ED process will be (Figure 4). The area under the curve is also a measure of the detection
accuracy. A larger area under the curve means that there is better ED accuracy and vice
versa (Figure 4). The ROC concept, as a frequently used concept for evaluating the PU
signal detection efficiency, is further used in the results section of this work.
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5. Energy Detection Process
5.1. Detection and False Alarm Probabilities

According to (5) and (6), the detection and the false alarm probabilities can be ex-
pressed as statistical probabilities in order to become [45,47]:

Pdi
= Prob (τi(n) > λi(n)) = Q

λdi
−
(

P + σ2
ni

)
√

2
N

(
P + σ2

ni

)
 (11)
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Pf ai
= Prob (τi(n) < λi(n)) = Q

λ f ai
− σ2

ni√
2
N σ2

ni

 (12)

where Q(.) is the standard Gaussian complementary cumulative distribution function
(CDF). Based on relations (11) and (12) and by taking into account that λ f ai

= λdi
= λi, the

interdependence between the detection probability and the false alarm probability can be
developed. For the ED process not impacted by NU and performed with a fixed detection
threshold, this interdependence can be expressed as:

Pdi
= Q

Q−1
(

Pf ai

)
−
√

N
2 SNR

1 + SNR

 (13)

where Q−1 (.) is the inverse standard Gaussian complementary CDF. According to relation
(13), for a small sample quantity, low SNR and high false alarm probability, the PU signal
detection cannot be achieved for any level of detection threshold λi.

5.2. Detection Threshold Estimation

The choice of detection threshold is the most important process that defines the
performance of any sensing method, including the ED [8]. The detection threshold is
a value that defines the detection efficiency, and optimal threshold selection represents
the value needed to meet the detection performance requirements [3]. As previously
mentioned, the threshold estimation techniques can be broadly classified as either fixed or
dynamic. The fixed threshold can be calculated based on two principles: the constant false
alarm rate (CFAR) and the constant detection rate (CDR). Noise power (σ2

ni
) is needed to

determine the threshold in both cases [3,49].
If the required false alarm probability (Pf ai

) is predetermined, the false alarm threshold
based on the CFAR principle (λ f ai) can be expressed according to relation (12) as [47,49]:

λ f ai = Q−1
(

Pf ai

)
σ2

ni

√
2
N

+ σ2
ni

(14)

In the CFAR principle, the threshold is set to meet an aimed false alarm probability
(Pf ai

) and this threshold is then used to calculate the corresponding detection probability
Pdi

. The CFAR principle is used in CR when it is required to guarantee the reuse probability
of the unused spectrum that demands the setting of the probability of the false alarm Pf ai
to a small fixed value, while the detection probability Pdi

should be maximised.
Similarly, in order to achieve a target detection probability Pdi

for the average received
signal power P of a specific PU, the detection probability threshold λdi

, in the case of the
CDR principle, can be derived from relation (11) [47,49]:

λdi = Q−1(Pdi

)(
P + σ2

ni

)√ 2
N

+
(

P + σ2
ni

)
(15)

The CDR principle is used when it is necessary to guarantee a non-interference
probability of the incumbent systems. This requires setting the detection probability Pdi

to
a high value and minimising the false alarm probability Pf ai

. By comparing expressions
(14) and (15), it can be noted that the CFAR approach does not need the average received
signal power P of a PU to set the threshold λ f ai

. For this reason, the CFAR principle is
more commonly used in practice.

However, constantly setting the false alarm probability Pf ai
to low values means that

the corresponding threshold (λ f ai) will be high. As a consequence, interference may occur
since it is not easy to detect low-power signals due to the very demanding values of the
CFAR threshold λ f ai

. Therefore, the CFAR approach based on a fixed threshold is not
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optimal. An optimal threshold setting can be achieved if each SU dynamically adjusts its
threshold according to its channel state.

In order to gain better system performance, selecting the appropriate value of the
DT is a challenging task. However, performing analyses when DT variation is taken into
account enables significantly more realistic analyses. Instead of remaining constant, the
threshold can be scaled with DT factor ρ′ (ρ′ ≥ 1) in such a way that the factor ρ′ sets the
DT interval λ′DT

i ε
[

λi
ρ′ , ρ′λi

]
.

In the case of an ED system based on DT adaptation (λ′DT
i ), the detection probability

(from relation (11)) and the false alarm probability (from relation (12)) are given by:

PDT
di

= min
λ′DT

i ε[
λi
ρ′ , ρ′λi ]

Q

λ′DT
i −

(
P + σ2

ni

)
√

2
NDT

(
P + σ2

ni

)
 = Q

 λi
ρ′ −

(
P + σ2

ni

)
√

2
NDT

(
P + σ2

ni

)
 (16)

PDT
f ai

= max
λ′DT

i ε[
λi
ρ′ , ρ′λi ]

Q

λ′DT
i − σ2

ni√
2

NDT σ2
ni

 = Q

 ρ′λi − σ2
ni√

2
NDT σ2

ni

 (17)

The interdependence between the detection probability and the false alarm probability
can be expressed as:

PDT
di

= Q

Q−1
(

PDT
f ai

)
−
[
ρ′2SNR +

(
ρ′2 − 1

)]√
NDT

2

ρ′2(1 + SNR)

 (18)

If the detection threshold is fixed, the factor ρ ′ = 1, and relations (16), (17) and (18)
converge to (11), (12) and (13), respectively. The case when factor ρ ′ > 1 implies that the
ED process is based on the adaptation of the DTs. A higher value of the DT factor results in
a greater range of DTs for possible selection.

5.3. Noise Uncertainty Estimation

The threshold values of (14) and (15) are derived based on the knowledge of the
exact noise variance σ2

ni
. However, in practice, it is very difficult to assume the exact level

of noise variance in any moment. This is a consequence of the fact that the total noise
can vary significantly from time to time since it consists of the noise from the receiver
and environmental and thermal noise together. This noise power fluctuation, known as
NU, causes a decrease in the accuracy of the sensing sensitivity. The drawback of this
phenomenon is that the accuracy of detection falls quickly, which can cause SU interference
in the PU [45]. Therefore, neglecting the existence of NU leads to a limitation in assessing
the performance of the ED.

To achieve a more realistic scenario, it is necessary to take into account the impact of
the NU variations on the ED process. Uncertainty of noise power can be expressed by the
NU factor ρ (ρ ≥ 1). Therefore, the bounds of the noise variance (σ2

NUi
) are assumed to be

in the interval σ2
NUi

ε[
σ2

ni
ρ , ρσ2

ni
] defined by NU factor ρ. The detection probability and the

false alarm probability in the case of NU can be derived from (11) and (12), respectively.
The expressions for detection probability and the false alarm probability are:

PNU
di

= min
σ2

NUi
ε[

σ2
ni
ρ ,ρσ2

ni ]

Q

 λi −
(

P + σ2
NUi

)
√

2
NNU

(
P + σ2

NUi

)
 = Q

 λi −
(

P +
σ2

ni
ρ

)
√

2
NNU

(
P +

σ2
ni
ρ

)
 (19)
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PNU
f ai

= max
σ2

NUi
ε[

σ2
ni
ρ ,ρσ2

ni ]

Q

 λi − σ2
NUi√

2
NNU σ2

NUi

 = Q

 λi − ρ σ2
ni√

2
NNU ρ σ2

ni

 (20)

According to relations (19) and (20), the probability of PU detection when the received
signal is impacted by NU and the fixed detection threshold is:

PNU
di

= Q

ρQ−1
(

PNU
f ai

)
−
(

SNR − ρ−1
ρ

)√
NNU

2
1
ρ + SNR

 (21)

The selection of factor ρ = 1 implies that there is no NU and relations (19), (20) and
(21) converge towards relations (11), (12) and (13), respectively. However, the case when
ρ > 1 implies the existence of NU and the larger values of ρ mean a larger NU range. For
example, when the NU factor is 1.02, it means that the variations of the noise power are 2%
of the average level of received noise power.

5.4. Energy Detection with NU and DT Adaptation

The ED system that jointly encompasses DT adaptation and the estimation of uncer-
tainty in the noise level (NU) is the most realistic from the implementation and simulation
perspective. However, it is also the most difficult to implement in practice because it
requires the highest processor power in terms of the SU device. This is due to the necessity
of the continuous estimation of noise variance (NU) and DT during the sensing process.

In this section, the PU signal detection probability and the false alarm probability will
be expressed as functions of NU and DT. Hence the limits of NU variation are assumed to

be in the interval σ2
NUDTi

ε[
σ2

ni
ρ , ρσ2

ni
] while the limits of the DT adaptation are assumed to

be in the interval λ′NUDT
i ε

[
λi
ρ ′ , ρ ′ λi

]
. By taking into account these limiting values, the

false alarm probability and the detection probability in the case of NU and ED performed
by DT adaptation can be derived based on the central limit theorem, thus becoming [44]:

PNUDT
di

= min
λ′NUDT

i ε[
λi
ρ′ ρ′λi ]

min
σ2

NUDTi
ε[

σ2
ni
ρ , ρσ2

ni ]

Q

λ′NUDT
i −

(
P + σ2

NUDTi

)
√

2
NNUDT

(
P + σ2

NUDTi

)
 =Q


λi
ρ′ −

(
P +

σ2
ni
ρ

)
√

2
NNUDT

(
P +

σ2
ni
ρ

)
 (22)

PNUDT
f ai

= max
λ′NUDT

i ε[
λi
ρ′ ,ρ

′λi ]

max
σ2

NUDTi
ε[

σ2
ni
ρ ,ρσ2

ni ]

Q

λ′NUDT
i − σ2

NUDTi√
2

NNUDT σ2
NUDTi

 == Q

 ρ′λi − ρσ2
ni√

2
NNUDT ρσ2

ni

 (23)

It is possible to define the number of samples needed or sensing duration period as a
function of PNUDT

di
, PNUDT

f ai
and average SNR as [47]:

NNUDT =
2[
(

ρ/ρ′)Q−1
(

PNUDT
f ai

)
− ρ′(1/ρ + SNR)Q−1

(
PNUDT

di

)]2

[ρ′SNR + ρ′/ρ − ρ/ρ′]2
(24)

The NNUDT represents the minimum sample quantity needed for the precise detection
of PU signal for specified NU factor ρ and DT factor ρ′. It can be observed that the relation
(24) does not contain the decision threshold parameter. This means that, for any threshold
level, the detection with a higher sample quantity must result in a better probability of ED,
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and vice versa. According to relations (22) and (23), the detection probability (PNUDT
di

) and
the false alarm probability (PNUDT

f ai
) are related as [47]:

PNUDT
di

= Q

 ρ
ρ′Q
−1
(

PNUDT
f ai

)
−
(

ρ′SNR + ρ′

ρ −
ρ
ρ′

)√
NNUDT

2

ρ′
(

SNR + 1
ρ

)
 (25)

To target the specific PU signal detection probability, relation (25) shows that param-
eters, such as the average SNR, the probability of a false alarm PNUDT

f ai
and the sampling

number NNUDT , must be guaranteed for specific factors of DT adaptations (ρ′) and NU
variations (ρ).

The influence of NU and DT (as separate factors) on overall ED performance can be
simulated based on three cases by selecting appropriate values of ρ′ and ρ. For the first
case, where ρ′ = 1.00 and ρ > 1.00, there is no continuous adaptation of DT. In addition,
the second case, where ρ′ > 1.00 and ρ = 1.00, means that the ED process excludes the
impact of NU and the only DT adaptation is simulated in the ED process for sensing PU
signals. For the same channel characteristics (e.g., the same SNR at the location of SU)
impacted by NU and the same sample quantity NNUDT = NNU , the detection probability
and false alarm probability, expressed with relations (22) and (23), converge to relations
(19) and (20) for the first case and relations (16) and (17) for the second case. In the third
case, the influence of NU and DT adaptation on the ED process can be simulated when
ρ > 1.00 and ρ′ > 1.00. In order to illustrate the impact of these specific factors, Figure 5
visualises two signals with equal average received powers (|P| =

∫ t
0 y(t)dt) but different

NUs (variations). The received signal presented on the left side in Figure 5 has a lower

noise variance, which is in the range σ2
1NUDTiε

[
σ2

1ni
ρ1

, ρ1σ2
1ni

]
, while the received signal

presented on the right side has significantly higher noise variance spanning the range
σ2

2NUDTiε
[
σ2

2ni/ρ2, ρ2 σ2
2ni
]
, where ρ′2 > ρ′1. Hypotheses H0 or H1 from relations (1) or

(9–10) are satisfied if the signals from Figure 5 fall below or above the dynamically set
threshold, respectively. The detection threshold is dynamically adjusted according to the
signal level and noise variations (NUs), and it can be in the range λ′NUDT

1i ε
[

λ1i
ρ′1 , λ1iρ′1

]
for

the left side signal in Figure 5 and λ′ NUDT
2i ε

[
λ2i
ρ′2

, λ2i ρ′2
]

for the right side signal where
ρ′2 > ρ′1. In essence, the detection threshold has to be set based on the worst-case noise
level uncertainty. In order to maximise the detection probability, the threshold value has
to be adjusted appropriately. This means that an increase in NU must be followed by an
appropriate change in DT adaptation (Figure 5).
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6. Energy Detection Algorithm

The algorithm developed for simulating ED of OFDM signals is presented in this
section. The algorithm enables the simulation of the detection process for PU signals with
and without DT adaptation and NU variations. Matlab (R2016) was used to model the SS
process and to simulate the ED of the signals transmitted within different OFDM system
designs (RA, MA and combined RA and MA).

The pseudocode of the algorithm used for the SS of signals based on the ED method is
presented as Algorithm 1. The 1st line of Algorithm 1 sets the input simulation parameters,
which include the OFDM signal (ofdm_signal), the sample quantity (N), the length of the
OFDM data (len_ofdm_data) obtained after conversion of signals from parallel to serial
(as shown in Figure 1), the SNR, the NU factor (ρ), the DT factor (ρ′), the noise variances
(σ2

ni
), the range of Pf ai

values (length (Pf ai
)) and the number of Monte Carlo simulations

(kk). Table 3 shows the exact values of the parameters used in the simulation. The selected
values are based on the parameters characteristic of the real OFDM systems.

Table 3. Parameters used in simulations.

Parameters Quantity

Modulation of PU signal OFDM
Type of OFDM (constellation) QPSK, 16 QAM, 64 QAM, 256 QAM
Type of channel noise AWGN
Quantity N of samples (FFT size) 128, 256, 512, 1024
SNR range at SU position (dB) −25–10
The range of detection and false alarm probabilities 0–1
Quantity of Monte Carlo iterations per simulation 10,000
Noise variance σ2

ni
in the case of DT (ρ = 1.00) 1.00

Noise variance σ2
ni

in the case of NU and DT (ρ > 1.00, ρ′ > 1.00) 1.01
NU factor ρ 1.00, 1.02, 1.03, 1.05
DT factor ρ′ 1.00, 1.01, 1.03, 1.05

The OFDM signal (ofdm_signal) in line 3 of Algorithm 1 is generated by setting the
initial parameters, which include the OFDM modulation type, the size of each OFDM block,
the FFT/IFFT points, the length of CP, the interference constellation and the normalisation
type and amount of PU Tx power. The parameters for performing the Monte Carlo
simulations, such as the length of the false alarm probability (Pf ai

) and the number of
simulations, are defined and executed in Algorithm 1 lines 4 to 8. Lines 9 to 10 show the
pseudocode expressing generation of AWGN with variance σ2

ni
and zero mean. The selected

values of noise variances used for the simulation are set to realistic levels characteristic for
real wireless channels (Table 3).

The OFDM signal (final_ofdm_signal) is created by multiplying the amount of SNR and
the values of the OFDM signal in line 11. In lines 12–13 of Algorithm 1, two versions of
the received signal are shown. The Received_signal_1 indicates the OFDM signal without
the noise variation (ρ = 1) detected with the DT adaptation (ρ′ > 1). The Received_signal_2
indicates the OFDM signal in the scenario of NU variation (ρ > 1) detected with DT
adaptation (ρ′ > 1). The energy calculation for each of the received signals (energy_calc_1
and energy_calc_2) is presented in lines 14–15 of Algorithm 1.

In pseudocode lines 16–17, the average signal received for a number of N samples is
represented as a calculation of test statistics for two scenarios: the test statistics for signals
received with DT adaptation (test_stat_1) and for signals received with NU variation and
DT adaptation (test_stat_2). The calculation of the test statistics expressed as average
received signal energy is performed according to the relation (2).

Pseudocode lines 18–19 present the assessment of the received signal threshold.
Thresh1(p) expresses the first scenario where the received signal is detected by means of DT
adaptation. Thresh2(p) expresses the second scenario where the received signal is impacted
by the NU variation and received based on DT adaptation. Mathematical expressions for
the first and second scenario are presented by relations (17) and (23), respectively.
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Algorithm 1 Simulation of ED process

1:INPUT:OFDM signal (ofdm_signal), len_ofdm_data, sample quantity (N), SNR, NU factor (ρ), DT factor (ρ′), noise
variance (σ2

ni
), length of (Pf ai ), and number of Monte Carlo simulations (kk)

2: OUTPUT: Detection probability (PNUDT
di

)
3: INITIALISE: OFDM signal (ofdm_signal)
Step 1: Simulation Detection probability (Pdi ) vs. Probability of False Alarm (Pf ai ) based on (13, 18, 21, 25)
4: set kk = number of Monte Carlo simulations
5: set Pfa = false alarm probability in interval [0,1]
6: FOR p = 1:length (Pf ai );
7: i1 = 0; i2 = 0;
8: FOR kk = 1:10,000;
Step 2: Generate AWGN noise (wi(t)) with zero mean and variance
9: Noise_1 (ρ = 1.00, ρ′ > 1.00) = sqrt (σ2

ni
= 1.00). *randn (1, len_ofdm_data);

10: Noise_2 (ρ > 1.00, ρ′ > 1.00) = sqrt (σ2
ni
> 1.00. *randn (1, len_ofdm_data);

Step 3: Generate PU signal xi (t) and Received signal yi(t) calculation
11: final_ofdm_signal = sqrt(SNR).*ofdm_signal;
12: received_signal_1 = final_ofdm_signal + Noise_1;
13: received_signal_2 = final_ofdm_signal + Noise_2;
Step 4: Received signal energy calculation
14: energy_calc_1 = abs(received_signal_1).ˆ2;
15: energy_calc_2 = abs(received_signal_2).ˆ2;
Step 5: Test statistic calculation using (2)
16: test_stat_1 = (1/N).*sum(energy_calc_1);
17: test_stat_2 = (1/N).*sum(energy_calc_2);
Step 6: Threshold evaluation using (17) and (23)
18: thresh1(p) = ((qfuncinv(Pf ai (p))./sqrt(N))+ 1)./ρ′;
19: thresh2(p) = ((qfuncinv(Pf ai (p)).* ρ./sqrt(N))+ ρ)./ ρ′;
Step 7: Decision making using (7) and (8)
20: IF (test_stat_1 >= thresh1(p));
21: i1 = i1+1;
22: END
23: IF (test_stat_2 >= thresh2(p));
24: i2 = i2 + 1;
25: END
26: END
Step 8: Monte Carlo simulation-determining Pdi (1)
27: Pdi 1(p) = i1/kk;
28: Pdi 2(p) = i2/kk;
29:END
30:UNTIL Pdi = [0,1]

The decision process is performed according to the relations (7) and (8) and presented
in lines 20–26 of Algorithm 1. For every scenario analysed, the comparison of the threshold
is performed using the corresponding received signal energy: test_stat_1 and test_stat_2.
If the received signal energy is equal to or larger than the threshold, hypothesis H0 is
confirmed and PU is present as indicated in relation (1). If the received signal energy is
lower than the threshold, hypothesis H1 is confirmed (according to relation (1)) and PU is
absent. In lines 27–30 of the algorithm, determining the probability of PU signal detection
(Pdi

) is performed through Monte Carlo simulations in order to obtain the most realistic
results for all cases analysed. The false alarm probability (Pf ai

) passes through a set of
values in the range 0–1. For each false alarm probability (Pf ai

), the detection probability
(Pdi

) is calculated in order to be in the range 0–1. Analyses are performed for the different
values of DT (ρ′) and NU (ρ) factors, which differ among the specific simulation cases.

7. Results of Simulations

This section presents the parameters used in simulations and cognitions obtained
as a result. The ED approach as an SS method was simulated for the diverse OFDM
based systems and ED concepts (with and without DT adaptations and NU variations).
Differences between the received PU signals (in terms of Tx power, modulation types, SNR
levels) and ED approaches (in terms of sample quantity, target false alarm probabilities)
were simulated through the impact of NU variations and DT adaptations on the ED process.
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Based on the simulations performed, a presentation of the impact of these factors on the
ED capabilities of different OFDM system designs is given.

7.1. Parameters of Simulation

Table 3 shows a summary of the parameters used in the simulations. The four most
common types of OFDM transmission modulations were used: 256 QAM, 64 QAM,
16 QAM, and QPSK. As indicated in Table 3, the FFT sizes of OFDM signals equal to
1024, 512, 256 and 128 were selected for analysis. The SNR of the received signals selected
for analysis was between −25 dB and 10 dB. Such an SNR range covers the practical
environments of many contemporary communication technologies based on OFDM trans-
mission. The signal detection and false alarm probabilities were analysed for the range
0–1. The results were obtained for 10,000 Monte Carlo simulations (Table 3). This number
of Monte Carlo simulations was selected for analysis according to the trade-off between
simulation duration and simulation accuracy. For the modeling of the different types of
received PU signals, the characteristic values of the NU and DT factors were used (Table 3).
To eliminate the influence of NU (ρ) and DT (ρ′) in the modeling, the NU and DT factors
were set to ρ = ρ′ = 1.00. To simulate a more realistic PU signal detection, NU and DT
factors in the range between 1.01 and 1.05 were exploited for modeling of the different
impacts of the NUs and DTs on the ED process (Table 3). The analysis was based on the
worst-case detection and false alarm probabilities when the NU and DT are in the ranges
specified by the ρ and ρ′ parameters.

7.2. Influence of DT Adaptation on Performance of ED

The results of the first study presented in Figure 6 show the influence of the DT
adaptation on the ED process in RA systems. The results were obtained for a constant
Tx power (1 W) of PU, and distinct levels of DT ( ρ ′) and NU factors (ρ). Different NU
factors express the influence of the intensity of AWGN variations on the ED of OFDM
signals. Additionally, different DT factors represent a versatile level of threshold adaptation
capabilities during the ED process.
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systems, versatile combinations of NU and DT factors, and two distinct SNR levels.

Figure 6 presents the results obtained as ROC curves for the distinct constellations of
m-PSK/m-QAM modulations at the location of SU. The results presented in Figure 6 were
also obtained for two SNR values (−5 dB,−20 dB) and the unchangeable number of OFDM
samples (N = 128). These conditions are typical of real, practical implementations in which
ED performance is challenged by different SNRs in the position of SU. The obtained results
presented in Figure 6 show that the detection probability (Pdi

) is equal for any m-QAM or
m-PSK modulation. Hence for any such systems transmitting with a constant Tx power
(RA systems), the detection probability does not depend on the modulation order. This is a
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consequence of the nature of the PU transmission in the case of RA systems, which is based
on the dynamic adjustment of the modulation order while transmitting at the same Tx
power. For this reason, the signal energy detected at the location of the SU during the ED in
RA systems can only be affected by noise fluctuation. This supports the results presented
in Figure 6 showing that, for the same sample quantity, SNR in the position of SU, and the
Tx power of PU, the detection probability will be lower for higher noise variations (higher
NU factor ρ).

Although in RA systems the adjustment of modulation order during ED does not
have any effect on the PU signal detection probability, it can be seen from Figure 6 that
DT adjustment can improve ED performance. More specifically, in the case of ED without
NU variations and with DT adaptation (ρ = 1.00, ρ′ = 1.03), the detection probability
will be the highest for any modulation scheme (Figure 6). However, this scenario is, from
a practical point of view, the least realistic. According to Figure 6, the lowest detection
probability was obtained for the simulation scenario with significant noise variations
(ρ = 1.05), but without DT adaptation (ρ′ = 1.00). This is expected since the ED of signals
impacted by NU and without DT adaptation during the ED process significantly reduces
the detection probability. Hence, the improvement of the detection probability in the case
of increased NU variations for all modulation schemes (Figure 7) can be expected only if
ED is based on DT adaptation (ρ′ > 1).
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In Figure 7, the results of the analyses dedicated to the influence of DT adaptation on
ED of PU signals in combined MA and RA systems are presented. The results were obtained
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for a fixed SNR (min. −15 dB) at the location of SU, a constant sample quantity (N = 128),
and for the four most commonly used OFDM modulations: QPSK and 16/64/256-QAM.
The simulation results are presented in Figure 7 as ROC curves for distinct NU levels and
DT factors, and the different PU Tx powers and corresponding modulations. The levels
of the Tx power selected for the analyses are characteristic of real OFDM communication
systems, such as WLAN (100 mW) and 2G–5G wireless mobile systems (1 W for the mobile
device, 10–15 W for macro base stations).

Figures 6 and 7 suggest that, for a specific SNR at the location of SU and for ED
of signals with an equal sample quantity N impacted by an equal NU variation (ρ), the
detection probability will be higher in the cases where PU transmits with a larger Tx power
and vice versa. This is a consequence of a lower Tx power, which results in lower energy at
the location of SU that further results in a lower signal detection probability. The results
presented in Figure 7 also show that the larger DT adaptation range (higher DT factor ρ′)
results in a better detection probability and, consequently, the better performance of the
ED process. It is shown that, for the larger range of NU fluctuations (a higher NU factor ρ),
better ED performance can be accomplished only if the larger range of DT adaptations are
used. This enables the appropriate adjustment of the threshold to the larger NU variations.
However, an uncontrolled setting of the DT adaptation range to some arbitrary high or low
value can lead to the selection of too low or too high ED thresholds. This might lead to
extreme ED sensitivity or misdetection (Figure 5). In both cases, the detection probability
will be degraded. Hence the DT range must be adapted according to the level of the NU
variations. This means that the higher expected NU variation should be followed by a
higher DT adaptation range and vice versa.

Additional analyses have been performed for the MA systems affected by the same
NU variation (ρ = 1.02). Figure 8 presents the results of the analyses, where it was assumed
that every OFDM modulation (QPSK or 16/64/256 QAM) for a specific level of Tx power
(10 W or 100 mW) can obtain SNR equal to −15 dB or higher at the location of SU. The
simulation results present distinctions among the detection probabilities for MA systems
transmitting with versatile Tx powers, while using the same OFDM modulation.
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The higher detection probability will involve the sensing of the OFDM modulated
signals transmitted at a higher Tx power for the same false alarm probability. This leads to
the conclusion that the Tx power adaptation in MA systems largely influence the detection
probability, even when the NU variation is constant (Figure 8).
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7.3. Impact of SNR on the ED Performance

Next, simulations were performed with respect to the influence of SNR at the location
of SU on the ED performance. The obtained results shown in Figure 9a for the RA systems
indicate the effect of SNR on the detection probability of the OFDM signal. The results
presented in Figure 9a confirm that, for the constant PU Tx power equal to 1 W and for
the unchanged value of the false alarm probability equal to Pf ai

= 10%, the detection
probability will remain the same for any modulation and corresponding constellation
(m-QAM//m-PSK). Nevertheless, Figure 9a shows that for the higher levels of SNR,
the detection probability will be better for any modulation order and decrease with the
degradation of SNR. This is due to the higher SNR, which results in higher PU signal
energy at the location of SU. This improves the ED process and, as a consequence, increases
the PU detection probability. In addition, the results presented in Figure 9a confirm that
the trade-off between the level of NU variation and DT adaptation has an impact on the
detection probability. More specifically, for the higher NU variation range (ρ = 1.05) and
lower DT adaptation range (ρ′ = 1.03), the detection probability will be lower compared to
the ED of the signals impacted with the lower NU variation (ρ = 1.03) and ED performed
with a higher DT adaptation (ρ′ = 1.05).
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Additionally, the ROC curves for the fixed PU Tx power (1 W) and the versatile SNR
values (−5 dB,−10 dB,−25 dB) of OFDM signal influenced with distinct NUs and received
with different DT adaptation ranges are presented in Figure 9b. The presented results show
that, for channels with a higher SNR in the location of SU (−5 dB), the detection probability
will be higher due to the lower influence of noise on the ED. Although NU variations have
an impact on the ED, the total AWGN level has a significant influence on the ED and high
levels of noise can largely reduce ED efficiency. This is due to the lower SNR in the position
of SU, where the fixed PU Tx power means higher noise. As a consequence, this results in
a lower detection probability. Apart from the significant influence of the overall level of
AWGN, Figure 9b additionally confirms the non-negligible influence of NU, which further
contributes to the degradation of ED efficiency. Figure 9b suggests that, for lower NUs, the
detection probability will be higher for signals with a higher SNR. Based on these results,
the combination of high SNR with low NU positively influences the ED performance of the
RA system.

For combined MA and RA systems, the impact of SNR on the detection probability of
the OFDM signals affected by distinct NUs is presented in Figure 10a–d. The results show
that, independent of the OFDM modulation and PU Tx power, larger noise fluctuations
(characterised with a larger NU factor ρ) decrease the detection probability at any SNR
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lower than the SNR threshold (confirmed PU detection). The fluctuations of NU influence
every OFDM signal, regardless of its modulation order and Tx power. Although for the
signals with a lower Tx power this influence is more observable, this is also reflected in the
lower detection probabilities (Figure 10a–d).
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Furthermore, for the distinct levels of Tx power, an SNR threshold higher than some
level for which the PU detection probability can be ensured is visible (Figure 10a–d). This
SNR threshold is significantly affected by the Tx power level and is reduced for the signals
with larger PU Tx (e.g., 5 dB for Tx power of 1 W and−5 dB for 10 W Tx power). According
to Figure 10a–d, the OFDM constellation has no influence on this SNR threshold, since it
has no direct impact on the detection probability (which is also confirmed with relations
(11), (13), (16), (18), (19), (21), (22) and (24)).

The impact of distinct SNR levels and Tx powers on the detection probability of
combined MA and RA systems is shown in Figure 11. The results were acquired for distinct
SNRs (−7 dB/−10 dB/−25 dB) of the m-PSK/m-QAM signals influenced by the same NU
(ρ = 1.02) in the scenario where the PU signal is being transmitted at different Tx powers (15
W, 10 W, 1 W and 0.1 W). Based on the results obtained, the combination of the level of PU
Tx power and SNR at the position of SU has a strong influence on the detection probability
for the ED technique. According to expectations, for better SNR and higher Tx power
levels, the detection probability will be larger and vice versa. Moreover, in Figure 11a, it
can be seen that, for the low Tx power values equal to 100 mW, the detection probability at
the location of SU cannot be increased without SNR enlargement (above−7 dB). Otherwise,
in Figure 11d, it can be seen that, for the larger Tx power equal to 15 W, the signal detection
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during ED can be ensured (detection probability of Pdi
= 100%) for each SNR level higher

than −7 dB. These prove the strong influence of the trade-off between the noise and Tx
power on the efficiency of ED.
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Figure 12 shows the impact of SNR on the detection probability of the MA systems,
which transmit at distinct Tx powers equal to 1 W/10 W. Transmission is assumed to
occur over a channel with equivalent channel environments (the same NU factor ρ = 1.01),
the fixed false alarm probability (Pf ai

= 10%), and versatile OFDM modulations. If the
modulated OFDM signals are transmitted with the equal Tx power and influenced by the
same NU, the results presented in Figure 12 indicate that the OFDM modulations do not
have any influence on the detection probability at any SNR level. Nevertheless, a lower
detection probability can be seen for signals of equivalent OFDM constellations transmitted
at a lower Tx power. This is because transmission at a lower Tx power degrades the SNR
in the position of SU. For higher SNRs in the position of SU (e.g., above −5 dB), the MA
system that transmits with a lower Tx power (1 W) will have a lower detection probability
than an MA system transmitting at a larger Tx power having the same SNR in the position
of SU. Therefore, in MA systems, transmission at a lower Tx power degrades the detection
probability at any SNR in the position of SU. However, transmission at a lower Tx power
has a positive impact on the power consumption of the PU device.
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7.4. Impact of the Sample Quantity on the ED Performance

The following results presented in this section are dedicated to the analysis of the
influence of the sample quantity (N) on the capability of detecting PU during the ED
process. The ROC curves for signals transmitted with a constant Tx power equal to 1 W
using the m-QAM/m-PSK modulations and detected by a different sample quantity are
presented in Figure 13. Analyses were performed for two combinations of NU and DT
factors (ρ = 1.02, ρ′ = 1.01 and ρ =1.05, ρ′ = 1.03) and for the case when SNR is fixed in the
position of SU equal to −15 dB.
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Figure 13. Interdependence between detection and false alarm probabilities for ED of m-PSK/m-QAM
modulated signals transmitted with Tx power of 1 W and sensed with the distinct sample quantities.

Figure 13 shows that the sample quantity has a non-negligible influence on the ED
performance of RA systems. When the smaller sample quantity is used in the ED process
(N = 128), the results obtained for the channels with the same channel characteristics
(equivalent NU and SNR) showed that the signal detection probability will be lower and
vice versa. This result is a consequence of the lower sample quantity, which actually
means a lower number of independent trials in a period during which the signal of PU is
being sensed.
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Compared to the detection of signals impacted by a higher NU and somewhat higher
DT factor (ρ = 1.05, ρ ′ = 1.03), the results in Figure 13 show that, for the lower values of
NU and DT factors (ρ = 1.02, ρ ′ = 1.01), a higher detection probability can be obtained
with the same sample quantity. This is because the lower NU results in less degradation
of the received signal, which demands less sample quantity (sensing attempts) for the
accurate ED of the PU signal. To ensure the same probabilities of detection for the same
sample quantity, a significant increase of NU must also be followed by an appropriate
increase in the DT adaptation. Otherwise, the sample quantity must be increased and this
trade-off between sample quantity and DT adaptation range significantly impacts the ED
efficiency. ROC curves have been shown in Figure 14a–d for different OFDM modulated
signals sensed by a distinct sample quantity and transmitted at four distinct Tx powers.
The analysis was performed for the fixed SNR in the position of SU equal to −15 dB and
for moderate NU level (ρ= 1.02) with the corresponding DT adaptation ( ρ ′ = 1.01).
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Based on the results presented, the increase in the sample quantity and PU Tx power
in combined MA and RA systems led to an increase in the detection probability and vice
versa. This was an expected result since relations (11), (16) and (19) confirm that the sample
quantity (N) and the Tx power of PU influence the detection probability. A lower Tx
power for some OFDM modulations means weaker signal energy at the location of SU.
Furthermore, fewer sample quantity N results in a lower number of independent trials for
the PU ED.

Additionally, for analysed combinations of NU, Tx power, and SNR level (higher than
the SNR wall) presented in Figure 14d, a threshold N, related to the sample quantity above
which the detection probability can be ensured for each OFDM modulation (Pdi

= 100%), can
be seen. For OFDM modulations transmitted at a higher Tx power (presented in Figure 14),
the value of this threshold will be lower. Transmission at larger Tx power means more
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energy at the location of the SU user which requires fewer samples to perform accurate PU
detection. Since higher Tx power is generally used for transmission of modulations with
a lower constellation order and vice versa, in combined MA and RA system designs this
type of transmission can obtain PU detection with a smaller sample quantity.

The impact of the sample quantity on the detection probability (Pdi
) for MA systems

is shown in Figure 15a–d. The results were obtained for the fixed false alarm probability
(Pf ai

= 0.1), the DT factor ρ ′ =0.1, and transmission at four distinct Tx powers (100 mW,
1 W, 10 W, 15 W). Analyses were also performed for channels with a constant NU variation
equivalent to 2% of the average noise level. The results obtained showed that a lower
detection probability is accomplished for a lower SNR, and a lower sample quantity for
any OFDM modulation (Figure 15a–d). Since a lower SNR is a direct result of the impact of
higher noise on signal transmission at a specific Tx power, the detection probability will
decrease as the level of SNR decreases (Figure 15a–d).
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However, Figure 15a–d indicate the presence of the SNR threshold below which the
detection probability cannot be guaranteed (Pdi

< 100%). The value of the threshold will be
larger for signals sampled with a larger sample quantity or transmitted with a higher Tx
power. Therefore, increasing the detection probability is related to the trade-off between
the Tx power of the PU in MA systems and the sample quantity used during ED by SU.
According to this trade-off, for a higher Tx power and lower sample quantity, it is possible
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to obtain better detection probabilities when compared to the PU transmission of signals
with a low Tx power detected using an increased sample quantity.

This confirms the importance of the PU Tx power level in the ED performance of any
OFDM based system (MA, RA, or combined MA and RA).

7.5. Influence of the False Alarm Probability on the ED Performance

The last group of simulation results is dedicated to the explanation of the impact of
the false alarm probability on the detection probability for versatile OFDM-based systems.
The false alarm probability (Pf ai

) is defined (in Section 4.1.) as the probability that the SU
wrongly concludes that a PU is transmitting when the PU is not active. In the case that a
real PU is present and the SU correctly estimates this, the possibility that the SU wrongly
concludes that a PU is present starts to increase. This explains why the decrease in the false
alarm probability (Pf ai

) is followed by a decrease in the detection probability (Pdi
) and vice

versa (indicated in Figures 6–8, 9b, 11, 13 and 14).
As mentioned in Section 5.2., performing the ED process based on satisfying the

demand for some predefined value of the false alarm probability is the essence of the CFAR
ED process. Although the false alarm probability must be as low as possible, in practice a
false alarm probability of up to 20% can be tolerated and used. This motivates the selection
of such a value in further analyses. In particular, the results of the analysis presented
in Figure 16 were obtained for the three characteristic probabilities of false alarms (Pf ai

).
From the practical point of view, they express low (1%), moderate (10%) and substantial
(20%) false alarm probabilities. In Figure 16, for the RA system, the relationship among
the detection probability and SNR has been presented with respect to the three values of
false alarm probability. The results were obtained for an equal NU factor (ρ = 1.02), equal
sample quantity (N = 128), and different DT factors ( ρ ′ = 1.01, ρ ′ = 1.03).
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The obtained results showed that, for lower values of SNRs and probabilities of false
alarm (1%), the detection probability will be lower and vice versa (Figure 16).

As explained in Section 7.2., a low SNR results in a decrease in detection probability
(Figures 6–8, 9b, 11, 13 and 14). However, for ED with a low level of PU signal energy in
the position of SU, and for a decrease in the false alarm probability to the lowest values, a
decrease in detection probability will be obtained (Figures 6–8, 9b, 11, 13 and 14). However,
for ED with a higher DT factor ( ρ ′ = 1.03), Figure 16 shows a higher detection probability
for the same false alarm probability, SNR, and signals impacted by the same NU. This



Sensors 2021, 21, 3080 27 of 41

further proves the importance of DT adaptations, which can improve the ED process for
any value of demanded false alarm probability in the case of the CFAR ED approach.

The impact of different SNRs on detection probability for combined MA and RA
systems transmitting at distinct Tx powers is presented in Figure 17a–d. The results for
each of the four simulations were obtained under equal NU variation (ρ = 1.02), the same
sample quantity (N = 128), and DT factor ( ρ ′ = 1.01). In Figure 17a–d, it can be seen
that the combination of a higher Tx power and a higher false alarm probability increases
the detection probability for any OFDM constellation. Nevertheless, it must be taken
into account that the increase in false alarm probability raises the possibility of incorrect
decisions by the SU in the ED process. For this reason, an appropriate trade-off between Tx
power and maximal false alarm probability in case of the CFAR ED approach must take
place. Additionally, Figure 17a–d show that the SNR threshold (known as the SNR wall)
below which accurate PU signal detection is not feasible is influenced by the false alarm
probability and PU Tx power. According to Figure 17a–d, the SNR threshold will be lower
for signals transmitted with a larger Tx power (−5 dBm for Tx power of 100 mW compared
to −25 dB for Tx power of 15 W) and detected by the lower (CFAR) setting of false alarm
probability. For this reason, in combined MA and RA systems, OFDM signals transmitted
at a higher PU Tx power can be sensed at lower SNRs, if the set value of the false alarm
probability is higher.
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8. Future Challenges for the Enhancement of ED Limitations

The discussion concerning the performance limitations and future research oppor-
tunities for the improvement of the ED method is given in this section. The results of
simulations shown in the preceding section on the ED effectiveness of versatile OFDM
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based systems were used as the foundation of this discussion. Table 4 provides an overview
of the main disadvantages of the ED method and points out the opportunities for the
enhancement of SS based on ED.

Table 4. Comparison of main ED drawbacks and expected improvements.

Major ED Disadvantages Challenges in Future ED Research Possible Enhancements

Reduction of detection precision as a
consequence of variations in noise
power (NU) [3,8,10,16,45,47,49–64]

Implementation of new algorithms for
optimal selection of DT and its assessment

Improvement of ED accuracy in
environments impaired with noise

fluctuations (NU)

Degradation of detection accuracy at
low SNRs [55,56,65–71]

Development of new noise
estimation techniques

Improvement of ED accuracy at
lower SNRs

Reduction of detection accuracy for a
low sample quantity [72–82]

Optimising detection time (sample
quantity) for exact detection

Increase in throughput of SU, reduction
in SU energy consumption (in CWSN)

The existence of more accurate local SS
methods [7,77,83–114]

Combining the ED approach with other
approaches for SS at the same SU node

Ensuring desired sensing performance or
accurate detection of specific idle bands

Degradation of detection accuracy due
to fading channels and hidden node

problem [66,68,115–124]

Novel collaboration approaches among
SUs for reducing the impact of fading or

hidden node problem

Improvement of ED robustness in fading
channels and elimination of any hidden

node problems

Inability to differentiate between
interference, PU and SU

signals [118,125–129]

Collaboration among distributed SUs
based on combining ED with other

detection methods in collaborative sensing

Elimination of the problem of PU, SU and
interference distinction, and contribution
to the improvement of wideband sensing

8.1. Research Challenges Related to Noise Uncertainty

The results of the simulations shown in Figures 6, 7, 9, 10 and 13 confirm that the major
ED weakness is the reduction of the detection precision when the variation of NU (noise
power) rises. As shown in the preceding section, the degradation of the ED performance
caused by the NU can be lowered through the DT adaptation (Table 4).

Thus far, the literature has presented significant research results dedicated to the
topic of DT adaptation for the improvement of the ED technique [3,8,10,16,45,47,50–64]. To
satisfy the requirement of the targeted probability of a false alarm, in Refs. [51,60,63,64], the
detection threshold was optimised iteratively. In Ref. [51], an optimal adaptive threshold
that utilises the SS error function was proposed. In Ref. [53], the SS based on unknown noise
power was adaptively estimated for the different methods of ED. For finding and localising
the narrowband signals, in Refs. [5,54,130], an algorithm based on double-thresholding was
proposed. Generally, references [50–53] showed the degradation of the sensing performance
when the energy detector does not properly adjust its threshold. A well-selected detection
threshold can minimise the SS errors, ensure the appropriate detection of a PU, and enable
full spectrum utilisation [3].

Several authors have investigated the implementation of DT when there is an NU
influence on the sensing process in CR networks. In Refs. [55–58], the SS performance of
ED was presented by considering the NU and different DTs in the channel. Different types
of DT methods, more specifically Otsu, Rosin, Kapur and Entropy, were presented and
compared in Ref. [15]. The impact on the ED sensing performance of NU and DT as both
separate and joint factors was analysed in Ref. [36]. Besides their ratio, it was concluded
that the absolute values of DT and NU have a significant impact on sensing performance.
In Ref. [45], DTs were arbitrarily generated for each SU in order to increase the detection
performance of the predefined NUs.

An ED method based on an adaptive threshold, which keeps the false alarm rate at a
preferred point under any noise level in an unknown WGNC, was presented in Ref. [59].
The adaptation of the SS threshold in CR by means of a method based on discrete Fourier
transform filter bank was proposed in Ref. [60]. In Ref. [8], the adaptive threshold method
was proposed as an alternative approach to estimate the threshold as a function of the
first and second-order statistics of recorded signals. The simulation results indicate that
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the adaptive threshold has a low false alarm rate when the standard deviation coefficient
of the noise is selected properly. This approach can satisfy the detection requirements of
multi-channel CRs for either narrow or wideband SS.

The adaptive threshold control for ED was implemented in Refs. [60,63] with a linear
adaption of the threshold based on SINR (Signal to Interference plus Noise Ratio) [61].
This approach achieves a much higher SU throughput than the energy detectors with a
fixed threshold, while maintaining the good stability of false alarm and missed detection
probabilities. The proposed approach is based on the concept of estimating channel noise
in which only noise is received by the SU. In Ref. [62], the usage of DT computed based
on minimising the probability of error while keeping the transmission rate was proposed.
The result indicated that the probability of an error occurring can be minimal when the
DT scheme is used, while the noise variance can be constant or variable in the channel. In
Ref. [49], an estimated noise variance was used to calculate the DT for the SS based on ED.

In Ref. [10], a new adaptive threshold algorithm was proposed for the discrete wavelet
packet transform and Welch’s ED methods to assess the trade-off between detection and
false alarm probability. The proposed adaptive algorithm demonstrated that the target
performance requirements can be achieved for very low SNRs (−18 dB).

According to the results presented, the constant change in noise power over time
makes the dynamic ED threshold adaptation a demanding activity and no optimal algo-
rithm has been deduced so far. Thus, the enhancements in the algorithms which will set
the iteratively optimal DT in any moment of ED process remain an open research issue for
SS based on the ED method. Previous related works have mostly analysed the adaptation
of the DT through simulations with different system parameters assumed to be unchanged
in simulations. Since parameters can change over time, the assessment of new algorithms
for ED must be performed in practice.

8.2. Research Challenges Related to the ED Degradation at Low SNRs

ED performance significantly depends on an estimate of the noise level in terms of
precision and reliability. Since this estimate is used for calculating SNR at the position of
SU, the evaluation of the influence of different DT adaptation levels for versatile NU levels
was presented in the previous section. According to the results presented in Figures 9–12
and Figures 15–17, an additional relevant disadvantage of the ED method is the lack of
possibility to reliably sense PU signals for low SNRs at the location of SU (Table 4), which
was also proven in Refs. [66,67].

According to the results of the simulations presented previously, if the noise power
contributes to the overall SNR in such a way that the SNR is below a specific level known
as the SNR wall [68], the energy detector cannot sense a difference between the PU signal
and the somewhat higher noise power. This works independently of the sensing duration
length or the used sample quantity [55]. Since measuring NU is a demanding process
due to the constant variations of NU over time, ED techniques require a mechanism that
constantly estimates NU in order to accurately compute the overall noise power.

This estimation can be done using OFDM signal guard bands or by means of a
channelized radiometer in the frequency domain [69,70]. The channelized radiometer
divides the overall frequency spectrum into several channels and then combines the energy
from each separate channel using a radiometer. The cell averaging concept presented in
Ref. [68] was used for the realisation of channelized radiometer when CFAR ED strategies
are considered [70]. An estimation concept based on an adaptive noise level was offered
in Ref. [67], as a consequence of the errors detected in the assessment of noise power [56].
This concept was based on classification algorithms of multiple signals, which can split
the noise and signal subspaces and estimate the noise floor. An approach based on the
DT selection according to the real measurements of the noise level power present in the
received signal during SS was proposed in Ref. [65]. The results showed an enlargement in
the detection probability compared to those based on ED with a static threshold.
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Nevertheless, new approaches offering more reliable and accurate noise level estima-
tion for SS using ED are missing. Such novel approaches which will increase the precision
of the noise level estimation can contribute to the improvement of signal detection at
weaker SNRs (Table 4).

8.3. Research Challenges Related to Sensing Duration

The next important ED limitation is detection accuracy reduction when performing
detection with a low sample quantity (Table 4). This reduction is also confirmed by the
simulation results presented in Figures 13–15. ED requires a large sample quantity and/or
a longer sensing period if a high detection probability is to be accomplished [72,73,131].
However, during the sensing period, the end-to-end transmission delay increases since
the data transmission is stopped, which also degrades the SU throughput. For these
reasons, the sample quantity used for the ED should be as low as possible. This has a
negative impact on the detection performance (as presented in Section 7.4) and requires
more repetitions of the sensing period. Hence, the sensing time (sample quantity) and
periodic sensing intervals in the CR networks must be optimised to minimise sensing errors
and/or to increase the SU throughput (Table 4). The strong impact on the ability of the SU
to exploit the available spectrum involves an adjustment of the periodic sensing interval
during the ED process [66,74,75].

Moreover, it was shown in Section 7.3 that the sample quantity impacts the ED accu-
racy in terms of the detection probability. The trade-off between the SU throughput and
sensing duration of the ED method was analysed in Ref. [76]. In order to optimise the
transmission rate for the Sus, under the limitation that the PUs are adequately secured,
the sample quantity used in the detection process is minimised. The authors in Ref. [16]
proposed a DT adaptation to improve the detection performance in an environment char-
acterised by NU and low SNR. The results showed a considerable reduction in the minimal
number of samples for sensing at low SNR compared to other proposed approaches in
the literature. Nevertheless, the frequency of the sensing period (in terms of the sample
quantity) and its duration is an important design element that requests further investigation
for the improvement of ED SS (Table 4).

To address the problem of weak detection precision in the case of detection with a
low sample quantity, solutions based on SS with a dual-radio sensing architecture have
been proposed [81,82]. With the dual-radio detector approach, one radio chain is dedicated
to SS, while the other is dedicated to data reception and transmission. Compared to the
single-radio architecture, the possible drawbacks of such an approach are the increased
hardware cost and power consumption of SU.

An ED shortage related to the impairment of detection accuracy in case of a small
sample quantity is further dedicated to the ability of using the ED in cognitive wireless
sensor networks (CWSN). ED can be very promising for use in CWSN, since sensor nodes
characterised with low power consumption can exploit the low computational complexity
of the ED method [77–79]. However, increasing the sample quantity for precise sensing re-
duces the energy efficiency of the sensor nodes. In CSWN, even maintaining the transceiver
of the sensor node active only during SS contributes to large power consumption [80].
Hence, the possible application of the ED method in resource-limited CWSN demanding
maximisation of the sensors’ battery lifetime can only be realised through the development
of novel ED concepts (Table 4). These concepts must combine a minimum duration of
sensing and a low computational complexity of the ED process.

8.4. Research Challenges Related to the Different SS Methods

Among different narrowband methods for local SS, the ED is just one of the non-
cooperative methods (Table 4). To improve the sensibility and reliability of the available
spectrum detection, thus far in the relevant literature a number of distinct narrowband SS
approaches have been proposed. The comparison of the main performance parameters
among ED and other relevant non-cooperative local SS methods is presented in Table 5.
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Table 5. Comparison of main performance parameters among ED and other non-cooperative SS methods.

Parameters for Comparison
with ED Method

Matched Filter
Detection (MFD)

Cyclostationary Feature
Detection (CFD)

Entropy Detection
Method (END)

Waveform Based
Detection (WBD)

Goodness of Fit Test
Detection (GFTD)

Eigenvalue Based
Detection (EBD)

[7,83–86,129,132,133] [77,84,86,89–93,104] [85,94–96] [77,87,88,134,135] [77,105–114] [77,97–104]

Detection accuracy at all
SNRs compared to ED Significantly better Better Better Significantly better Somewhat better Better

Amount of prior PU
information compared to ED Significantly higher Higher Equal (no PU

information) Higher Equal (no PU
information)

Equal (no PU
information)

Sensing time (sample
quantity) for accurate Lower Similar Similar Lower Lower Similar

Robustness against NU
compared to ED More robust Significantly more robust More robust More robust Similar More robust

Computational complexity
compared to ED More complex Significantly complex More complex More complex Somewhat complex More complex
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Regarding the accuracy of detection at different SNRs, the ED method is less accurate
compared to the cyclostationary feature detection (CFD), entropy detection (END), good-
ness of fit test detection (GFTD) and eigenvalue based detection (EBD) methods (Table 5).
Additionally, for the challenging case of the detection of signals at low SNR, matched filter
detection (MFD) and waveform based detection (WBD) have significantly better detection
accuracy than ED (Table 5). In the case of WBD and MDF methods, this is due to the neces-
sity of obtaining a priori knowledge of some of the PU signal parameters. Therefore, the
amount of information received from PU needed for performing accurate SS significantly
differs among the local SS methods compared in Table 5. While END, GFD and EBD do not
require any a priori information about the PU signal, the aforementioned MFD, WBD and
CFD techniques request precise information about the PU signal pattern. This information
might include details such as the transmitter pilots, preamble, guard bands, etc., while
WBD even requests the synchronisation between the PU and SU. However, accurate prior
information about the PU signal may not be achievable at any time, since SU and PU do
not exchange information constantly. This represents the main limitation of the MFD, CFD,
and WBD techniques.

Nevertheless, for the MFD and WBD methods, it has been shown that the accurate
prior information of the PU signal contributes to a reduction of sensing frequency and has
an equal or even better detection performance for lower sample quantity when compared
to other local sensing methods (Table 5). Compared with the ED method, the CFD, END
and EBD methods request a similar sample quantity for accurate SS. This is significantly
larger than for the MFD and WBD methods when equal detection accuracy has to be
accomplished. This is an important disadvantage which limits the practical implementation
of these methods in CWSNs, since a higher sample quantity and more frequent sampling
periods contribute to the faster depletion of wireless sensor batteries. Compared with
the ED method, the MFD, END, WBD and EBD methods are more robust against NU
while the GFTD technique has a similar level of robustness (Table 5). However, CFD is
considerably more resistant against NU than ED and the other methods, due to the fact
that the noise is typically not cyclostationary. The more accurate PU signal detection in
the channels impacted by the higher NU variation can be accomplished by exploiting the
cyclostationarity effect of the PU signal in the case of the CFD method. In the case of the
EBD method, more accurate PU detection is observed for better correlation structure and
diversities in the eigenvalues of the statistical covariance matrix of noise and signal.

However, in order to accomplish this in practice, the computational complexity of the
CFD and EBD methods is significantly higher than the ED and other SS methods (Table 5).
This was confirmed in the tutorial work [136] dedicated to the analysis of blind SS (BSS)
approaches (requesting no prior knowledge of the PU signal), where a comparison between
ED and the EBD covariance approaches was performed. Generally, when compared
with other BSS or non-BSS methods (Table 5), the ED technique has the least amount of
computational complexity since it does not encompass complex processing of signals. The
low computational complexity of the ED method enables the simple implementation of
ED and explains why ED compared with other local (non-cooperative) methods for SS
currently has the highest representation in real life implementation.

The presented comparison of distinct local methods for SS shows that ED has a
number of weaknesses (Table 5), and there is no optimal non-cooperative SS technique
for every application. Choosing the most appropriate SS technique for local PU signal
detection is a major challenge because SS techniques differ in their performance (Table 5).
The implementation of an appropriate detection technique is strongly dependent on the
application and it must be PU system-oriented in order to maximise the probability of
detecting spectral opportunity.

These cognitions bring up the question of whether it would be possible to improve
sensing accuracy through the parallel implementation of different local SS techniques at the
same SU node (Table 4). Such cooperative SS can be of particular interest for the purpose
of wideband SS, where, in the first stage, a low complexity detection technique (such as
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ED) can be used to search for possible idle sub-bands. Additionally, in the second stage,
more advanced SS techniques (such as MFD, CFD, END) with higher detection sensitivity
can be used whenever the desired performance or accurate idle band detection must be
achieved. Some works have proposed a two-stage SS approach with a simple detection
method used in the first stage and a more accurate and computationally complex method
in the second stage [135–138]. A side effect of such an approach is found in the increased
sensing time and SU hardware costs. This explains why cooperative SS is far from full
exploitation. Hence, significant research activities must take place to precisely address the
role and advantages of ED as a method that can be used in conjunction with other local SS
methods at the same SU.

8.5. Research Challenges Related to the Fading Channels and Hidden Node Problem

Although ED in low SNR environments cannot achieve accurate and reliable sensing
results, previous research has also shown that ED, being a simple technique, lacks detection
reliability in deep fading environments [66,67,124] (Table 4). The performance analysis of
ED in fading channels was performed in Refs. [115–121]. Additionally, setting the detection
threshold with respect to the frequency notches in wireless frequency-selective fading
channels is one limitation. The other is the inability of the ED method to detect (direct
sequence and frequency hopping) spread-spectrum signals [3]. The ED technique is also
susceptible to spurious tones and baseband filter effects [137].

To overcome such challenges, more sophisticated SS methods based on collaboration
among the SUs must be devised. Determining whether a collaboration between different
SUs and corresponding SS techniques can improve the sensing performance in fading
environments is a possible approach to overcoming some of the aforementioned limitations
(Table 4). Collaborative detection is based on utilising versatile SS techniques by spatially
dislocated SUs in order to achieve accurate and reliable detection decisions. It was demon-
strated by Refs. [68,116,122] that a collaboration among distributed SUs that employ ED
alleviates the effects of NU when the users are experiencing independent and identically
distributed fading or shadowing.

Additionally, ED in other non-cooperative local spectrum sensing methods (presented
in Table 5) is sensitive to a hidden node problem (Table 4). When a cognitive SU is at a far
distance from the PU, the PU signal may be too weak for reliable detection. An advantage
of collaborative SS can be the possibility of improving the sensing performance through
mutual communication between the SUs [123]. The information on the signal of the PU
can be relayed to the distant SU. This can be done after reliable local signal detection has
been performed by the SU located near the PU. The challenges related to the integration
of SUs which use ED as the method for local SS in such a relaying collaboration detection
concept have to be investigated. Hence. further experimental investigations are needed in
order to improve the sensing performance in fading and hidden node environments, based
on collaboration among SUs which can use ED as one of the sensing techniques.

8.6. Research Challenges Related to the Users’ Distinction, Interference and Wideband Sensing

It is emphasised that ED is appropriate for random signal detection, since the ED
method does not demand any prior knowledge of the primary signal. Unfortunately, ED is
not an appropriate sensing method if the efficient spectral opportunity utilisation is condi-
tioned. This is because the ED method cannot distinguish between the interference, SU, and
PU signals (Table 4). As the ED method cannot identify the interference, adaptive signal
processing used for cancelling the interferer at SUs cannot be implemented. Moreover, the
spectrum policy related to the use of some of the frequency bands is limited to PUs. A
cognitive user should treat noise and signal from other SUs differently. In order to achieve
this, the collaboration between different detection techniques among SUs represents a
promising approach (Table 4).

Previous research in this field has been dedicated to collaborative multistage SS [125–127],
including the local SS stage, the transmission of the sensing results stage and the stage of
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information fusion for making detection-related decisions. For any type of collaborative
detection that can be centralised or decentralised [3], the local SS conducted by each SU is
performed independently, utilising the same or different detection algorithms, such as those
presented in Table 5 (ED, MDF, CFD, END, WBD, GFTD, EBD). Since ED is a lightweight
and simple method, as elaborated in the previous sections, some works have already used
this method within collaborative systems to assess local SS performance [129,132]. In this
case, each SU transmits the detected binary decision or energy signal to the destination node.
This node can be the neighbouring SU in the case of decentralised collaboration detection,
or it can be a fusion centre (FC) in the case of centralised collaboration detection. However,
the selection of the sensing method has an impact on how the cognitive SUs cooperate with
each other. Sensing methods are essential in collaborative detection systems because the
sensing and processing of PU signals is highly dependent on the Sus’ cooperation. Hence,
the role of ED as the most popular SS method requests deeper investigation, especially in
terms of cooperation with other SS approaches in such collaborative systems.

The benefit of this cooperation is found in the achievable space diversity, which brings
a diversity gain afforded by the sensing performed from multiple independent SUs. Even
if some of the SUs fail to detect the signal of the PU, detection opportunities for other SUs
remain. This increases the probability of PU detection. As the number of SUs involved in
cooperative SS increases, so does sensing accuracy and reliability. However, the negative
effect of this is the increased complexity of such a collaborative sensing system. The
question is, can ED as a simple method contribute to the reduction of this complexity?
The coordination of the sensing policies involved, occurring between the collaborating
SUs and the sensing cycles, must also be synchronised. Hence, an important challenge for
collaborative cognitive systems is the coordination of the sensing policy. This coordination
must be performed for the selection of the sensing frequency range, sensing inception, and
sensing duration.

Additionally, wideband frequency sensing ensures the identification of more frequency
opportunities. In the case of non-collaborative cognitive systems, this can be realised at
the expense of time and hardware cost [3]. The possibility of alleviating these costs
can be accomplished by wideband SS, using the implementation of a concept based on
the collaborative detection approach. An approach based on collaborative sensing was
proposed in Ref. [128]. In this approach, SUs in parallel sense different frequency bands
simultaneously and transfer their estimations to the FC. The low-complexity ED method
can be suitable in collaborative sensing for wider searching of possible idle sub-bands.
However, comprehensive research in this area should be performed in order to assess the
inclusion of the ED method in such a collaborative sensing approach.

Sensing inception and sensing duration must be coordinated among the SUs in order
to minimise the time duration needed for identifying spectral opportunities and to max-
imise transmission time in collaborative sensing systems. However, opportunistic and/or
dynamic spectrum access with ED as one of the sensing methods is still rudimentary. Dif-
ferent economic, regulatory and technical challenges must be solved before the advantages
of the ED method can be fully exploited in collaborative sensing systems.

9. Conclusions

Due to its low implementation cost and complexity, the ED method is assumed to
be a suitable approach for the practical realisation of SS in the CR networks. The broad
implementation of the OFDM technique in contemporary communication is based on RA,
MA and combined RA and MA systems. Such systems establish new possibilities related
to using the OFDM technique in CR applications. In this survey paper, the ED of OFDM
signals influenced by NU and detected through the adaptation of DT in the CR networks
was thoroughly analysed.

Firstly, an explanation of the ED concept according to the mathematical formulation
and a description of the influence of NU on the ED of the OFDM signals performed without
and with DT adaptation were given. Then, using the developed algorithm, the ED of
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the OFDM signals transmitted using distinct OFDM-based systems was simulated and
extensive simulation results were presented.

A comprehensive analysis of the obtained simulation results provided fundamental
explanations concerning the impact of transmit powers, the sample quantity used for PU
signal detection, SNRs at the location of SUs, and the false alarm probability on the ED
probability when distinct OFDM system designs are used. Through systematic analysis of
the obtained results, the weak performance of ED as an SS method was confirmed for SS
with a low sample quantity in environments with low SNRs and with detection performed
without DT adaptations. Improvements in ED performance were detected when the level
of DT adoptions followed the intensity of the NU variations for all OFDM system designs.
The analyses also showed a significant influence of different OFDM system designs on
ED performance, since the system designs based on the Tx power adjustments had a
strong impact on ED performance. By contrast, the system designs based on the OFDM
modulation constellation adjustments did not have any direct impact on ED performance.

Furthermore, the open issues and research challenges related to the improvements
of main ED limitations were analysed in detail through a survey of the existing literature.
The analysis was performed in terms of possible improvements of the ED method related
to the reduction of NU impact; the improvement of ED probability in the case of low SNRs;
the benefits obtained through cooperation with different SS methods; the minimisation of
the impact of fading; hidden nodes; and interference and the possibility of distinguishing
between different users through cooperative detection. Opportunities for future research
and directions which can bring improvements concerning ED as a SS method have been
elaborated on. It has been shown that further research efforts are needed in order to address
the drawbacks of ED and to make it possible to exploit all of the benefits of the ED method
as the most frequently used SS method in practice.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC Analogue to digital converter
AWGN Additive white Gaussian noise
BER Bit Error Rate
BPF Band-pass filter
BPSK Binary Phase Shift Keying
CDF Cumulative distribution function
CDR Constant detection rate
CFAR Constant false alarm rate
CFD Cyclostationary feature detection
CP Cyclic prefix
CR Cognitive radio
CRN Cognitive radio networks
CWSN Cognitive wireless sensor networks
DT Dynamic threshold
EBD Eigenvalue based detection
ED Energy detection
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END Entropy detection
FFT Fast Fourier transform
GFTD Goodness of fit test detection
GI Guard interval
IEEE The Institute of Electrical and Electronics Engineers
IFFT Inverse Fast Fourier Transform
IoT Internet of Things
ISI Inter-symbol interference
LTE Long Term Evolution
LTE-A Long Term Evolution-Advanced
MA Margin adaptive
MFD Matched filter detection
NU Noise uncertainty
OFDM Orthogonal frequency division multiplexing
OFDMA Orthogonal frequency division multiplexing access
PDF Probability density functions
PU Primary user
QAM Quadrature Amplitude Modulation
QoS Quality of service
QPSK Quadrature Phase-Shift Keying
RA Rate adaptive
RF Radio frequency
ROC Receiver Operating Characteristic
SINR Signal to Interference plus Noise Ratio
SNR Signal-to-Noise Ratio
SS Spectrum sensing
SU Secondary user
WBD Waveform based detection
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
WRAN Wireless Regional Area Networks
5G network 5th generation network
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